If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5q^2-8-4q=0
a = 5; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·5·(-8)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{11}}{2*5}=\frac{4-4\sqrt{11}}{10} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{11}}{2*5}=\frac{4+4\sqrt{11}}{10} $
| (4x+3)°=(x-8)° | | 50x+10=30x+5 | | 4(z=5)=32 | | -5v^2-24v+36=0 | | F(n)=10n | | 50x+10=10x-6 | | 3x^2−6x−2=0 | | 8e-5e+2=14 | | 40x+4=10x+2 | | X+20+2x=-10-2x-15= | | 30x+4=10x-2 | | 2p+7=-5p+20 | | 20x+4=10x-2 | | 6x-3=5-6x | | -2y=1.36 | | 5/3x+1/3x=5x+34/3+8/3x | | (3x-5)^2=39 | | 8-7m=-3+4= | | Y-3=-(3-y) | | 6x17=6x(N+N) | | x^2+8x-468=0 | | 6x8=64 | | -3/7x+6=0 | | 3=1/2x+11 | | 2x-3(x-2)=3x-(x-3) | | |6x-9|+5=2 | | 6×+3y=12 | | 3.93+4s=T | | 14x-4+12x=16+16x | | 4(8t+1)-8=t-(t+3 | | M=6y-24 | | 2(x+2)=2-3(x+3) |